User Tools

Site Tools


digic6:registers

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
digic6:registers [2025/05/05 19:09] – [Hardware compositor / layers] kitordigic6:registers [2025/05/06 10:12] (current) – [Setting palette for Indexed RGB layers] kitor
Line 3: Line 3:
 ===== Display layers and effects (HDMI, LCD, peaking/zebras control) ===== ===== Display layers and effects (HDMI, LCD, peaking/zebras control) =====
  
-Digic 6 and 7 allow to define up to 8 hardware display layers. Each of layers has independent source, resolution, visible area and even can support multiple variants of YUV and also Indexed RGB buffers. Layers can also do some hardware effects like over/under exposure highlights (known as zebras) and probably more.+Digic 6 and 7 allow to define up to 8 hardware display layers. Each layer has independent data source, resolution, visible area and even can support either one of YUV variants or Indexed RGB input. Layers can also do some hardware effects like over/under exposure highlights (known as zebras) and probably more.
  
 === Note on directly writing the display registers === === Note on directly writing the display registers ===
Line 9: Line 9:
 Depending on generation and model, Canon code will overwrite some (but not all) of the register values based on data structures stored in RAM. This applies also to layers code doesn't use. Depending on generation and model, Canon code will overwrite some (but not all) of the register values based on data structures stored in RAM. This applies also to layers code doesn't use.
  
-Output has to be active when MMIO is being written, otherwise changes will be ignored.+Output has to be active when corresponding MMIO is being written, otherwise changes will be ignored. 
  
 ==== Hardware compositor / layers ==== ==== Hardware compositor / layers ====
  
-There should be 3rd set of registers used for analog output similar to ones below.+Please note that Digic 6 and up have two separate concepts of layers and image compositing. One is GPU accelerated software solution known as Ximr/XCM - used by Canon code to draw OSD (GUI). 
 + 
 +For more details on Ximr/XCM and GUI, see this forum post: 
 +[[https://www.magiclantern.fm/forum/index.php?topic=26024.0|Compositors, layers, contexts in RGB and YUV - How Digic 7(6?)+ draw GUI]] 
 + 
 +This section describes hardware layer / compositor supported on Digic 6 and 7 models. Canon uses it to mix OSD (GUI) with image preview (LiveView, playback, etc). Similar hardware exists in later models (Digic 8 and up) but it has different capabilities, thus it is covered in dedicated section: [[digic8:registers| Digic 8 Registers]] 
 + 
 +==== VRAM registration ==== 
 + 
 +Before VRAM buffer can be used by a hardware layer, it has to be registered and assigned an ID. 
 + 
 + 
 +^ Base address   ^ Generation ^ 
 +| ''0xD2030100'' | DIGIC 6 | 
 +| ''0xD2060040'' | DIGIC 7 | 
 + 
 +MMIO structure is as below: 
 + 
 +^ Offset ^ Summary     ^ Description ^ 
 +| +0x0   | index       | Numerical ID, 8 bits - used for assignment in HW layer registers. | 
 +| +0x4   | pitch ?     | Derivative of image width. Computed as ''(( width \<\< 16) >> 20) - 1 | 0x20000''
 +| +0x8   | pointer-ish | Vram address bit shifted 8 to the right. Possibly to enforce alignment. | 
 + 
 +MMIO has to be written in order, be aware of any compiler optimizations (best to set data structures as volatile). 
 + 
 +Example code: 
 +<code C> 
 +#define MMIO_D6_REGISTER_VRAM            0xD2030100 
 + 
 +typedef struct mmio_d6_register_vram{ 
 +    volatile uint32_t index; 
 +    volatile uint32_t pitch; 
 +    volatile uint32_t ptr; 
 +} mmio_d6_register_vram; 
 + 
 +static void D6_register_VRAM(uint32_t buffer_index, uint32_t width, uint8_t* bmp_vram_indexed) 
 +
 +    mmio_d6_register_vram * vram_reg = (mmio_d6_register_vram*)MMIO_D6_REGISTER_VRAM; 
 + 
 +    uint32_t old_int = cli(); 
 +    vram_reg->index = buffer_index; 
 +    vram_reg->pitch = ((((width) << 0x10) >> 0x14) - 1) | 0x20000; 
 +    vram_reg->ptr = (uint32_t)bmp_vram_indexed >> 8; 
 +    sei(old_int); 
 +
 +</code> 
 + 
 +==== Setting palette for Indexed RGB layers ==== 
 + 
 +This works differently than Digic 5 and below. There's a MMIO structure (per output), which takes a pointer to palette of 256 uint32_t entries stored in RAM. Palette is assigned to output, not layer - so all layers on given output will be rendered using the same palette. 
 + 
 +Address didn't change between Digic 6 and 7. 
 + 
 +^ Address        ^ Output ^ 
 +| ''0xD2010680'' | HDMI | 
 +| ''0xD20139A0'' | LCD | 
 +| ''?''          | Video | 
 + 
 +MMIO structure is as below: 
 + 
 +^ Offset ^ Summary     ^ Description ^ 
 +| +0x0   | apply       | Write 0x1 to apply selected palette | 
 +| +0x4   | flag maybe  | Unknown, Canon BL writes 0xFF | 
 +| +0x8   | pointer-ish | Palette address, bit shifted 4 to the right. Possibly to enforce alignment. | 
 + 
 +Please note that fields have to be written in order: 'flag', 'pointer', 'apply'
 + 
 +Example code: 
 +<code C> 
 +typedef struct mmio_d6_palette{ 
 +    volatile uint32_t apply; 
 +    volatile uint32_t flag; 
 +    volatile uint32_t ptr; 
 +} mmio_d6_palette; 
 + 
 +static void D6_set_hw_palette(mmio_d6_palette* base_addr, uint32_t* palette) 
 +
 +    uint32_t old_int = cli(); 
 +    base_addr->flag = 0xff; 
 +    base_addr->ptr = (uint32_t)palette >> 4; 
 +    base_addr->apply = 1; 
 +    sei(old_int); 
 +
 +</code> 
 + 
 +==== Layers setup ==== 
 + 
 +There should be 3rd set of registers used for analog output similar to ones below. Address didn't change between Digic 6 and 7.
  
 ^ Base address   ^ Output  ^ Base address   ^ Output 
Line 20: Line 108:
 | ''??''         | Video    | ''??''         | Video   
  
-Each address consists of **8** sets (layers), each consisting of eight 32 bit values representing each hardware layer. MMIO order starts from bottom layer (0) to topmost (7) in Z axis.+Each layer config consists of eight 32 bit configuration words (registers). There are 8 total layers (8 sets of 8 registers) starting from Base address. MMIO is Z ordered starting from bottom layer (0) to topmost one (7). 
  
 ^ Offset ^ Summary          ^ Description ^ ^ Offset ^ Summary          ^ Description ^
 | +0     | Flags            | Configures data type, transformations (flip, upscale), zebras, etc | | +0     | Flags            | Configures data type, transformations (flip, upscale), zebras, etc |
-| +0x4   | Vram index ?     | Assignment to a peviously registered Vram buffer ID | +| +0x4   | Vram index ?     | Assignment to a previously registered Vram buffer ID | 
-| +0x8   | Input offsets    | Source buffer offsets (skips). ''x_off | (y_off << 16)''+| +0x8   | Input offsets    | Source buffer offsets (skips). ''%%x_off | (y_off << 16)%%''
-| +0xC   | Vram resolution  | Source buffer size in pixels. ''width | (height << 16)''+| +0xC   | Vram resolution  | Source buffer size in pixels. ''%%width | (height << 16)%%''
-| +0x10  | Output offsets   | Destination offsets. ''x_off | (y_off << 16)'' |+| +0x10  | Output offsets   | Destination offsets. ''%%x_off | (y_off << 16)%%'' |
 | +0x14  | scaling flag ?   | In HDMI mode it has to be set to 1 so vertical doubling works. | | +0x14  | scaling flag ?   | In HDMI mode it has to be set to 1 so vertical doubling works. |
 | +0x18  | ?                | | | +0x18  | ?                | |
Line 34: Line 123:
 === Vram index === === Vram index ===
  
-Wildly enough, MMIO doesn't take source buffer address, but rather a number associated to VRAM, which is registered via different MMIO. See TBD.+Strangely enough, MMIO doesn't take source buffer address, but rather a number associated with VRAM, which is registered via different MMIO. See [[registers##vram_registration|Vram registration]].
  
 Vram index register seems to also take two 16 bit values instead of one, possibly for layers that use separate image and alpha buffers (eg UYVY+AA, unconfirmed). Vram index register seems to also take two 16 bit values instead of one, possibly for layers that use separate image and alpha buffers (eg UYVY+AA, unconfirmed).
Line 59: Line 148:
 // Going through lowest byte (except LSB which is ENABLE bit) // Going through lowest byte (except LSB which is ENABLE bit)
 // reveals multiple combinations that work for some YUV and indexed formats. // reveals multiple combinations that work for some YUV and indexed formats.
-#define HWLAYER_TYPE_OSD     0x40 +#define HWLAYER_TYPE_UYVY_AA     0x40   // UYVY + separate alpha, eg. OSD 
-#define HWLAYER_TYPE_LV      0x04 +#define HWLAYER_TYPE_UYVY        0x04   // UYVY, no alpha - eg. LV 
-#define HWLAYER_TYPE_INDEXED 0x48+#define HWLAYER_TYPE_INDEXED_RGB 0x48   // Indexed RGB - eg. bootloader
  
 // No idea, Canon uses HWLAYER_UNK on LCD, HWLAYER_ZEBRAS on HDMI // No idea, Canon uses HWLAYER_UNK on LCD, HWLAYER_ZEBRAS on HDMI
-// Seems to have no effect at leat on indexed RGB+// Seems to have no effectat least on indexed RGB
 #define HWLAYER_UNK       0x40000000 #define HWLAYER_UNK       0x40000000
 </code> </code>
  
-Combining those flags is required to get desired effects. For example, `0x10000341is YUV/no transparency  buffer and zebras enabled on that layer. `0x660349will result in indexed RGB source, upscaled 2x and mirrored in both axes.+Combining those flags is required to get desired effects. For example, ''0x10000341'' is YUV/no transparency  buffer and zebras enabled on that layer. ''0x660349'' will result in indexed RGB source, upscaled 2x and mirrored in both axes.
  
-Please note than for unknown reasons HWLAYER_DOUBLE_V doesn'seem to work on HDMI unless scaling flag (+0x14) is set to 1. +Please note than for unknown reasons ''HWLAYER_DOUBLE_V'' doesn't work on HDMI unless scaling flag (''+0x14'') is set to ''1''
  
 Canon code will also forcefully overwrite some of the flags (zebras, upscaling register) from RAM data structures so values may need to be updated there instead of MMIO directly. Canon code will also forcefully overwrite some of the flags (zebras, upscaling register) from RAM data structures so values may need to be updated there instead of MMIO directly.
  
-=== How original firmware utilizes HW layers? ===+=== How does original firmware utilize HW layers? ===
  
 In default configuration, bootloader uses Indexed RGB on layer 0 to draw things on screen. In default configuration, bootloader uses Indexed RGB on layer 0 to draw things on screen.
Line 90: Line 179:
 | ''0x00000300'' | N/A     | Any    | Inactive    | Unused layers | | ''0x00000300'' | N/A     | Any    | Inactive    | Unused layers |
  
- 
-==== VRAM registration ==== 
- 
-Before VRAM can be used by a hardware layer, it has to be registered and assigned an ID. 
- 
- 
-^ Base address   ^ Generation  
-| ''0xD2030100'' | DIGIC 6 
-| ''0xD2060040'' | DIGIC 7 
- 
-MMIO structure is as below: 
- 
-^ Offset ^ Summary     ^ Description 
-| +0x0   | index       | Numerical ID, 8 bits - used for assignment in HW layer registers. 
-| +0x4   | pitch ?     | Derivative of image width. Computed as ''(( width << 16) >> 20) - 1 | 0x20000'' 
-| +0x8   | pointer-ish | Vram address bit shifted 8 to the right. Possibly to enforce alignment. 
- 
-MMIO as to be written in order, be aware of any compiler optimizations (best to set data structures as volatile). 
- 
-Example code: 
-<code C> 
-#define MMIO_D6_REGISTER_VRAM            0xD2030100 
- 
-typedef struct mmio_d6_register_vram{ 
-    volatile uint32_t index; 
-    volatile uint32_t pitch; 
-    volatile uint32_t ptr; 
-} mmio_d6_register_vram; 
- 
-static void D6_register_VRAM(uint32_t buffer_index, uint32_t width, uint8_t* bmp_vram_indexed) 
-{ 
-    mmio_d6_register_vram * vram_reg = (mmio_d6_register_vram*)MMIO_D6_REGISTER_VRAM; 
- 
-    uint32_t old_int = cli(); 
-    vram_reg->index = buffer_index; 
-    vram_reg->pitch = ((((width) << 0x10) >> 0x14) - 1) | 0x20000; 
-    vram_reg->ptr = (uint32_t)bmp_vram_indexed >> 8; 
-    sei(old_int); 
-} 
-</code> 
- 
-==== Setting palette for Indexed RGB layers ==== 
- 
-This works differently than Digic 5 and below. There's a MMIO structure (per output), which takes a pointer to palette of 256 uint32_t entries stored in RAM. 
- 
-^ Address        ^ Output  
-| ''0xD2010680'' | HDMI 
-| ''0xD20139A0'' | LCD 
-| ''?''          | Video 
- 
-MMIO structure is as below: 
- 
-^ Offset ^ Summary     ^ Description 
-| +0x0   | apply       | Write 0x1 to apply selected palette 
-| +0x4   | flag maybe  | Unknown, Canon BL writes 0xFF 
-| +0x8   | pointer-ish | Palette address, bit shifted 4 to the right. Possibly to enforce alignment. 
- 
-Please note that fields has to be written in order: flag, pointer, apply. 
- 
-Example code: 
-<code C> 
-typedef struct mmio_d6_palette{ 
-    volatile uint32_t apply; 
-    volatile uint32_t flag; 
-    volatile uint32_t ptr; 
-} mmio_d6_palette; 
- 
-static void D6_set_hw_palette(mmio_d6_palette* base_addr, uint32_t* palette) 
-{ 
-    uint32_t old_int = cli(); 
-    base_addr->flag = 0xff; 
-    base_addr->ptr = (uint32_t)palette >> 4; 
-    base_addr->apply = 1; 
-    sei(old_int); 
-} 
-</code> 
  
 ==== Display effects (zebras, etc) ==== ==== Display effects (zebras, etc) ====
Line 207: Line 220:
 | speed        | 0-1   | lines/dots are moving slower -> faster                  | | speed        | 0-1   | lines/dots are moving slower -> faster                  |
 | style        | 0-3   | 0: light dots, 1: thin lines, 2: thick lines, 3 = 0     | | style        | 0-3   | 0: light dots, 1: thin lines, 2: thick lines, 3 = 0     |
-| opacity      | 0-7   very opaque -> solid color                              |+| opacity      | 0-7   0 for transparent -> 7 for solid color                  |
 | underexpo_th | 0-255 | Threshold on undexexpo register, ignored on overexpo    |  | underexpo_th | 0-255 | Threshold on undexexpo register, ignored on overexpo    | 
 | overexpo_th  | 0-255 | Threshold on overexpo register, ignored on underexpo    | | overexpo_th  | 0-255 | Threshold on overexpo register, ignored on underexpo    |
digic6/registers.1746464996.txt.gz · Last modified: 2025/05/05 19:09 by kitor